

Tetrahedron 56 (2000) 4249-4252

An Efficient Synthesis of Arylcyclobutenes via Cross-Coupling of Aryl Halides with 1-(Tri-*n*-butylstannyl)cyclobutene

Jing Feng and Günter Szeimies*

Institut für Chemie der Humboldt-Universität zu Berlin, Hessische Str. 1-2, D-10115 Berlin, Germany

Dedicated to Professor Rolf Huisgen on the occasion of his 80th birthday

Received 17 April 2000; accepted 28 April 2000

Abstract—1-Tri-*n*-butylstannylcyclobutene, obtained from 1-bromocyclobutene by lithium/bromine exchange and transmetalation with chloro-tri-*n*-butylstannane, could be effectively converted with aryl halides into 1-arylcyclobutenes by the Stille cross-coupling procedure. Hetero-aryl halides like 2-bromopyridine and 2-iodothiophene were also successfully coupled, and in 1,3,5-tribromobenzene, 1,2,4,5-tetrabromobenzene and hexabromobenzene all bromine atoms could be exchanged. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Although several strategies for the synthesis of cyclobutenes have been developed in the past,¹ this class of compounds is generally not easily accessible. In recent years, some routes to cyclobutenes via cycloalkylation have also been described.² However, the general applicability of these methods is limited. Herein we report on a convenient and general synthesis of arylcyclobutenes via the Stille reaction³ of aryl halides with 1-tri-*n*-butylstannylcyclobutene (**3**). We have recently shown that 1-bromobicyclo[1.1.0]butane (**1**) is obtained from 1,1-dibromo-2-chlormethylcyclopropane and methyllithium.⁴ The conversion of **1** into 1-bromocyclobutene (**2**) is achieved by acid-catalyzed rearrangement. Compound **2** has also been used as a precursor for an efficient synthesis of cyclobutanone.⁵

1-Tri-*n*-butylstannylcyclobutene (3) as cross-coupling partner was obtained from 2 with *tert*-butyllithium in ether followed by transmetalation with chlorotri-*n*-butylstannane. In Scheme 1 the synthesis of 3 is depicted.

Results

With the convenient route to **3**, effective cross-coupling reactions with a wide variety of aryl halides were possible. The reactions of **3** were carried out with iodides and bromides **4** in DMF at 65° C with Pd(PPh₃)₄ as a catalyst.⁶ Approximately 5 mol percent of the catalyst were used (see Scheme 2). The corresponding 1-arylcyclobutenes **5** were isolated in good yields after reaction times of 18–48 h.

Keywords: Stille coupling; cyclobutenes; palladium catalysis.

* Corresponding author. Tel.: +30-20937365; fax: +30-20936940;

e-mail: guenter-szeimies@rz.hu-berlin.de

Table 1 shows the results.

In addition to **4a–4m**, 4-iodoaniline and 4-iodo-(*N*,*N*)dimethylaniline were also treated with **3**, but the expected products were not formed. Obviously an amino group is not tolerated within the catalytic cycle of this reaction.⁷ It is interesting to note that electron acceptor substituents (*p*-NO₂, *m*-CF₃, *p*-COCH₃) and electron donor substituents (*p*-OCH₃) give comparable results.

Having demonstrated that **3** reacts well with aryl monohalides, the dihalides 6a-d were treated with two equivalents of **3** in the presence of 10 mol percent of Pd(PPh₃)₄, again in DMF at 65°C. Within 18–24 h, good

4, 5	Aryl group of 4 and 5	Halogen of 4	Reaction time (h)	% Yield of 5	
a	4-tolyl	Ι	24	94	
b	3-tolyl	Ι	24	85	
c	2-tolyl	Ι	24	86	
d	4-anisyl	Ι	24	87	
e	3-anisyl	Br	48	98	
f	2-thioanisyl	Ι	24	84	
g	3-(trifluoro-methyl)phenyl	Br	18	96	
ĥ	4-nitrophenyl	Ι	24	98	
i	4-(trimethyl-silyl)phenyl	Br	18	84	
j	4-acetylphenyl	Ι	48	98	
k	1-naphthyl	Ι	24	71	
1	2-pyridyl	Br	24	97	
m	2-thienyl	Ι	24	88	

Table 1. Arylcyclobutenes 5 from 3 and arylhalides 4

Scheme 3.

9

yields of 7a-d could be isolated. The results are shown in Scheme 3.

The successful conversion of 6a-d into the coupling products 7a-d indicated that even higher halogenated benzenes could be used for the Stille coupling. Indeed, the efficiency of this cross-coupling reaction could be demonstrated using 1,3,5-tribromobenzene, 1,2,4,5-tetrabromobenzene and hexabromobenzene as starting materials. The reactions of **3** with these halides were carried out as described above, applying 6, 8, and, respectively 12 mol percent of Pd(PPh₃)₄ as a catalyst. The arylcyclobutenes **8**, **9** and **10** were isolated in 74, 54 and 52% yield (see Scheme 4).

Hexa(1-cyclobutenyl)benzene (10) is a waxy solid, which readily polymerized on contact with air. The 13 C NMR spectrum of 10 at room temperature showed 5 signals, indicating that the barrier of rotation around the bond connecting the benzene ring with the cyclobutene unit is easily surmounted at ambient temperature.

In conclusion, we have developed an efficient synthesis of arylcyclobutenes. Starting materials are readily available, the procedure is simple, the reaction conditions are mild and the yields are high.

Experimental

General

All reactions were carried out under nitrogen. Ether was freshly distilled from sodium, dimethylformamide (DMF) from calcium hydride. Flash chromatography was performed on silica gel 230–400 mesh. ¹H NMR spectra were recorded on a Bruker DPX 300 at 300 MHz, ¹³C NMR on the same instrument at 75 MHz, using CDCl₃ as solvent. Mass spectra were obtained on a Finnigan MAT 95 SQ apparatus (70 eV).

1-Tri-*n***-butylstannylcyclobutene (3).** *tert*-Butyllithium in hexane (11 ml, 1.7 M, 18.7 mmol) was added dropwise at -72° C to 1-bromocyclobutene (1) (1.33 g, 10.0 mmol) in ether (15 ml). After 2 h at 0°C, chlorotri-*n*-butyltin (3.25 g, 10.0 mmol) was added dropwise, the mixture was allowed to warm to room temperature and stirred for 2 h. The

mixture was quenched with saturated NH₄Cl solution, extracted with water and the ether layer dried over anhydrous MgSO₄. Removal of the solvent in vacuo and purification by column chromatography (petroleum ether) afforded **3** (2.47 g, 72%) as a colorless liquid.

¹H NMR (CDCl₃): δ 0.86–0.91 (m, 15H), 1.28–1.32 (m, 6H), 1.45–1.51 (m, 6H), 2.62 (m, 2H), 2.86 (m, 2H), 6.44 (broad s, 1H). ¹³C NMR (CDCl₃): δ 9.3 (CH₂), 13.7 (CH₃), 27.3 (CH₂), 29.2 (CH₂), 35.2 (CH₂), 37.3 (CH₂), 151.7 (CH), 155.0 (C_q). MS (EI): *m*/*z* (%) 343 (M⁺−H, 4), 287 (100), 231 (56), 177 (60), 121 (28). HRMS (C₁₆H₃₂Sn) calcd: 343.1447, found: 343.1448.

General procedure for the cross-coupling reaction

Under nitrogen atmosphere, 0.50 mmol of **3** and 0.25 mmol of the aryl halide were dissolved in 3 ml of DMF followed by addition of 5.0 mol% of Pd(PPh₃)₄ (based on aryl halide). The resulting mixture was stirred at 65° C for 18–48 h. Ether (20 ml) was added, and the solution was washed with an aqueous KF solution and with brine. The organic layer was dried with anhydrous MgSO₄. After concentration of the organic solution, the oily residue was subjected to a silica gel chromatography using a mixture of petroleum ether and ethyl acetate as eluent. In all cases, the excess of **3** was found in the first fraction. All fractions containing the product were combined, the solvent removed in vacuo and the remaining oil was characterized by ¹H NMR, ¹³C NMR, by MS and HRMS. The oils **5h**, **5j**, **7a**, **7c**, **8**, **9**, and **10** solidified slowly to a waxy mass.

¹H and ¹³C NMR spectra of 4-(1-cyclobutenyl)toluene (**5a**), 4-(1-cyclobutenyl)anisole (**5d**) and 1-(1-cyclobutenyl)-3-(trifluoromethyl)benzene (**5g**) were identical to the reported literature values.^{8,9}

3-(1-Cyclobutenyl)toluene (5b). Colorless oil, yield 85%. ¹H NMR (CDCl₃): δ 2.34 (s, 3H), 2.52 (m, 2H), 2.79 (m, 2H), 6.27 (broad s, 1H), 7.16 (m, 4H). ¹³C NMR (CDCl₃): δ 21.3 (CH₃), 26.2 (CH₂), 28.7 (CH₂), 121.3, 124.8, 126.9, 128.3, 134.1(CH), 134.9 (C_q), 137.7 (C_q), 146.5 (C_q). MS (EI): *m/z* (%) 144 (M⁺, 60), 129 (100), 115 (40), 91 (10). HRMS (C₁₁H₁₂) calcd: 144.0939, found: 144.0940.

2-(1-Cyclobutenyl)toluene (5c). Colorless oil, yield 86%. ¹H NMR (CDCl₃): δ 2.40 (s, 3H), 2.55 (m, 2H), 2.89 (m, 2H), 6.18 (broad s, 1H), 7.15–7.22 (m,4H). ¹³C NMR (CDCl₃): δ 21.8 (CH₃), 26.8 (CH₂), 30.6 (CH₂), 125.7 (CH), 126.1, 127.4, 130.5, 131.2 (CH), 133.5 (C_q), 136.5 (C_q), 146.4 (C_q). MS (EI): *m/z* (%) 144 (M⁺, 56), 129 (100), 115 (50), 91 (4). HRMS (C₁₁H₁₂) calcd: 144.0939, found: 144.0942.

3-(1-Cyclobutenyl)anisole (5e). Colorless oil, yield 98%. ¹H NMR (CDCl₃): δ 2.52 (m, 2H), 2.78 (m, 2H), 3.81 (s, 3H), 6.29 (broad s, 1H), 6.87–7.20 (m, 4H). ¹³C NMR (CDCl₃): δ 26.2 (CH₂), 28.7 (CH₂), 55.2 (CH₃), 109.5 (CH), 113.1, 116.8, 127.6, 129.3 (CH), 136.4 (C_q), 146.2 (C_q), 159.6 (C_q). MS (EI): *m/z* (%) 160 (M⁺, 100), 145 (28), 129 (72), 115 (40), 102 (20), 91 (18). HRMS (C₁₁H₁₂O) calcd: 160.0888, found: 160.0888.

2-(1-Cyclobutenyl)thioanisole (5f). Colorless oil, yield 84%. ¹H NMR (CDCl₃): δ 2.50 (s, 3H), 2.58 (m, 2H), 2.92 (m, 2H), 6.51 (broad s, 1H), 7.14–7.22 (m, 4H). ¹³C NMR (CDCl₃): δ 15.2 (CH₃), 27.0 (CH₂), 30.7 (CH₂), 124.1, 124.2, 126.9, 127.5 (CH), 133.7 (CH), 137.7 (C_q), 144.5 (C_q). MS (EI): *m/z* (%) 176 (M⁺, 40), 161 (100), 128 (50), 115 (15), 89 (8). HRMS (C₁₂H₁₁S) calcd:176.0651, found: 176.6450.

4-(1-Cyclobutenyl)nitrobenzene (5h). Yellow solid, yield 98%. ¹H NMR (CDCl₃): δ 2.52 (m, 2 H), 2.77 (m, 2 H), 6.47 (broad s, 1H), 7.35–8.11 (m, 4H). ¹³C NMR (CDCl₃): δ 26.8 (CH₂), 28.7 (CH₂), 123.8, 124.7 (CH), 133.2 (CH), 140.7 (C_q), 144.5 (C_q). MS (EI): *m*/*z* (%) 175 (M⁺, 60), 158 (65), 128 (100), 101 (25), 51 (30). HRMS (C₁₀H₉NO₂) calc: 175.0632, found: 175.0632.

4-(1-Cyclobutenyl)trimethylsilylbenzene (5i). Colorless oil, yield 84%. ¹H NMR (CDCl₃): δ 0.26 (s, 9H), 2.52 (m, 2H), 2.84 (m, 2H), 6.30 (broad s, 1H), 7.38–7.50 (m, 4H). ¹³C NMR (CDCl₃): δ –1.2 (CH₃), 26.3 (CH₂), 28.7 (CH₂), 123.4 (CH), 127.5, 133.3 (CH), 134.9 (C_q), 139.6 (C_q), 146.4 (C_q). MS (EI): *m/z* (%) 202 (M⁺, 100), 159 (4), 128 (4), 73 (8). HRMS (C₁₃H₁₈Si): calcd: 202.1177, found: 202.1176.

4-(1-Cyclobutenyl)acetophenone (**5j**). Colorless waxy solid, yield 98%. ¹H NMR (CDCl₃): δ 2.56 (m, 2H), 2.58 (s, 3H), 2.82 (m, 2H), 6.45 (broad s, 1H), 7.38 (m, 2H), 7.92 (m, 2H). ¹³C NMR (CDCl₃): δ 26.5 (CH₂), 26.6 (CH₃), 28.7 (CH₂), 124.1, 128.5, 130.9 (CH), 135.7, 139.1, 145.4, 197.6 (C_q). MS (EI): *m*/*z* (%) 172 (M⁺, 55), 147 (35), 129 (100), 115 (20), 77 (20), 51 (10). HRMS (C₁₂H₁₂O) calcd: 172.0883, found: 172.0882.

1-(1-Cyclobutenyl)naphthalene (5k). Colorless oil, yield 71%. ¹H NMR (CDCl₃): δ 2.66 (m, 2H), 3.04 (m, 2H), 6.54 (broad s, 1H), 7.41–8.46 (m, 7H). ¹³C NMR (CDCl₃): δ 27.0 (CH₂), 31.3 (CH₂), 124.4 (CH), 125.2 (CH), 126.3 (CH), 128.0 (CH), 128.6 (CH), 134.1 (C_q), 137.4 (C_q), 145.6 (C_q). MS (EI): *m*/*z* (%) 180 (M⁺, 95), 152 (100), 127 (70), 89 (35), 51 (15). HRMS (C₁₄H₁₂) calcd: 180.1017, found: 180.1023.

2-(1-Cyclobutenyl)pyridine (51). Colorless oil, yield 97%. ¹H NMR (CDCl₃): δ 2.50 (m, 2H), 2.84 (m, 2H), 6.63 (broad s, 1H), 7.05–8.51 (m, 4H). ¹³C NMR (CDCl₃): δ 26.5 (CH₂), 28.6 (CH₂), 132.4 (CH), 119.1, 121.9, 136.1, 149.4 (CH), 146.4 (C_q), 152.8 (C_q). MS (EI): *m*/*z* (%) 130 (M⁺ – H, 100), 104 (6), 78 (4). HRMS (C₉H₉N) calcd: 130.0657 (M⁺–H), found: 130.0661.

2-(1-Cyclobutenyl)thiophene (5m). Colorless oil, yield 88%. **5m** decomposed slowly during the recording of the NMR spectra. ¹H NMR (CDCl₃): δ 2.49 (m, 2H), 2.74 (m, 2H), 5.97 (broad s, 1H), 6.86–7.08 (m, 3H). ¹³C NMR (CDCl₃): δ 27.3 (CH₂), 30.2 (CH₂), 123.3 (CH), 124.4, 126.0, 127.2 (CH), 139.3 (C_q), 140.2 (C_q). MS (EI): *m/z* (%) 136 (M⁺, 96), 108 (48), 97 (28), 69 (8). HRMS calcd: 136.0346, found: 136.0344.

1,4-Di(1-cyclobutenyl)benzene (7a). Waxy solid, yield 93%. ¹H NMR (CDCl₃): δ 2.53 (m, 4H), 2.79 (m, 4H),

6.27 (broad s, 2H), 7.29 (s, 4H). ¹³C NMR (CDCl₃): δ 26.3 (CH₂), 28.7 (CH₂), 124.2 (CH), 127.1 (CH), 137.3 (C_q), 146.2 (C_q). MS (EI): *m/z* (%) 182 (M⁺, 60), 153 (34), 129 (100), 115 (20), 105 (6). HRMS (C₁₄H₁₄) calcd: 182.1096, found: 182.1097.

1,2-Di(1-cyclobutenyl)benzene (7b). Colorless oil, yield 98%. ¹H NMR (CDCl₃): δ 2.50 (m, 4H), 2.86 (m, 4H), 6.20 (broad s, 2H), 7.20 (m, 4H). ¹³C NMR (CDCl₃): δ 26.7 (CH₂), 31.2 (CH₂), 127.1 (CH), 127.5 (CH), 131.4 (CH), 133.6 (C_q), 146.7 (C_q). MS (EI): *m/z* (%) 181 (M⁺-H, 16), 167 (100), 153 (60), 128 (18), 115 (20). HRMS (C₁₄H₁₄) calcd: 181.1017 (M⁺-H), found: 181.1010.

2,6-Di(1-cyclobutenyl)pyridine (7c). Yellow solid, yield 95%. ¹H NMR (CDCl₃): δ 2.48 (m, 4H), 2.81 (m, 4H), 6.53 (broad s, 2H), 7.04–7.50 (m, 3H). ¹³C NMR (CDCl₃): δ 26.5 (CH₂), 28.8 (CH₂), 117.5 (CH), 132.6 (CH), 136.3 (CH), 146.7 (C_q), 152.6 (C_q). MS (EI): *m/z* (%) 182 (M⁺-H, 100), 154 (20), 129 (18), 102 (20), 77 (16). HRMS (C₁₃H₁₃N) calcd: 182.0969 (M⁺-H), found: 182.0964.

2,5-Di(1-cyclobutenyl)thiophene (7d). Colorless oil, yield 95%. ¹H NMR (CDCl₃): δ 2.49 (m, 4H), 2.72 (m, 4H), 5.95 (broad s, 2H), 6.70 (m, 2H). ¹³C NMR (CDCl₃): δ 27.3 (CH₂), 30.1 (CH₂), 123.6 (CH), 126.3 (CH), 140.2 (C_q), 148.1 (C_q). MS (EI): *m/z* (%) 188 (M⁺, 100), 160 (20), 148 (24), 135 (20), 115 (28), 91 (10). HRMS (C₁₂H₁₂S) calcd: 188.0659, found: 188.0654.

1,3,5-Tri(1-cyclobutenyl)benzene (8). Colorless solid, yield 74%. ¹H NMR (CDCl₃): δ 2.53 (m, 6H), 2.80 (m, 6H), 6.31 (broad s, 3H), 7.19 (s, 3H). ¹³C NMR (CDCl₃): δ 26.2 (CH₂), 28.8 (CH₂), 119.0 (CH), 127.6 (CH), 135.0 (C_q), 146.2 (C_q). MS (EI): *m*/*z* (%) 234 (M⁺, 64), 205 (20), 183 (30), 165 (80), 132 (64), 105 (38), 84 (54). HRMS (C₁₈H₁₈) calcd: 234.1408, found: 234.1406.

1,2,4,5-Tetra(1-cyclobutenyl)benzene (9). Colorless solid, yield 54%. ¹H NMR (CDCl₃): δ 2.50 (m, 8H), 2.85 (m, 8H), 6.20 (broad s, 4H), 7.03 (s, 2H). ¹³C NMR (CDCl₃): δ 26.7 (CH₂), 31.2 (CH₂), 126.7 (CH), 131.6 (CH), 132.3 (C_q), 146.3 (C_q). MS (EI): *m*/*z* (%) 286 (M⁺, 12), 257 (64), 229 (88), 202 (100), 189 (68), 165 (50), 152 (30), 115 (14). HRMS (C₂₂H₂₂) calcd: 286.1720, found: 286.1719.

1,2,3,4,5,6-Hexa(**1-cyclobutenyl**)**benzene** (**10**). Colorless solid, yield 52%. ¹H NMR (CDCl₃): δ 2.45 (m, 12H), 2.71 (m, 12H), 5.91 (broad s, 6H). ¹³C NMR (CDCl₃): δ 27.4 (CH₂), 34.3 (CH₂), 133.0 (CH), 133.8 (C_q), 146.7 (C_q). MS (EI): *m*/*z* (%) 390 (M⁺, 4), 333 (24), 306 (100), 263 (60), 226 (10), 138 (20). HRMS (C₃₀H₃₀) calcd 390.2348, found 390.2349.

Acknowledgements

We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank Dr G. Höhne, Technische Universität Berlin, for the mass spectra.

References

1. For a recent review, see: *Houben-Weyl, Methoden der* organischen Chemie; de Meijere A., Ed.; Georg Thieme Verlag: Stuttgart, 1997; Vol. E 17f, Chapter 8.

2. (a) Negishi, E.; Liu, F.; Choueriy, D.; Mohamud, M. M. J. Org. Chem. **1996**, *61*, 8325–8328. (b) Kasai, K.; Liu, Y.; Hara, R.; Takahashi T. Chem. Commun. **1998**, *18*, 1989–1990. (c) Barbero, A.; Cuadrado, P.; Carcia, C.; Rincon, J.; Pulido, F. J. Org. Chem. **1998**, *63*, 7531–7533.

3. Reviews: (a) Mitchell, T. N. In *Metal-catalyzed Cross-coupling Reactions*; Diederich, F.; Stang P.J., Eds.; Wiley–VCH: Weinheim 1998; pp 167–202. (b) Farina V. *Pure Appl. Chem.* **1996**, *68*, 73–78. (c) Mitchell, T.N. *Synthesis*, **1992**, 803–815. (d) Stille, J.K. *Angew*. *Chem., Int. Ed. Engl.* **1986**, *25*, 508–524.

4. (a) Belzner, J.; Gareiß, B.; Polborn, K.; Schmidt, W.; Semmler, K.; Szeimies, G. *Chem. Ber.* **1989**, *122*, 1509–1529. (b) Düker, A. Dissertation, Universität München, 1986.

5. Weber, J.; Haslinger, U.; Brinker, U. H. J. Org. Chem. 1999, 64, 6085–6086.

6. We have observed that $Pd(PPh_3)_2Cl_2$ could also be used as a catalyst in these experiments.

7. Falcou, A.; Marsacq, D.; Hourquebie, P. *Tetrahedron* **2000**, *56*, 225–231.

8. Leigh, W. J.; Postigo, J. A.; Can J. Chem. 1995, 73, 191-203.

9. Kirmse, W.; Krzossa, B.; Steenken, S. J. Am. Chem. Soc. 1996, 118, 7473–7477.